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Abstract
Using the Wigner transform, we present an alternative derivation of the partial
differential equation satisfied by the Slater sum, which is the diagonal element
of the canonical Bloch density matrix. This is done in one dimension for the
case of a general confining potential and also for the case of N independent
fermions harmonically confined in d dimensions. We also present a simple
proof of the so-called differential virial theorem for each of these cases.

PACS numbers: 03.65.Sq, 05.30.Fk, 31.15.Ew, 31.15.Gy, 71.10.Ca

1. Introduction

The canonical or Bloch density matrix, defined as

C(r, r′, β) := 〈r|Ĉ|r′〉 = 〈r| exp(−βĤ )|r′〉, (1.1)

plays an important role in the study of the properties of noninteracting fermions subjected
to a one-body potential V (r). Here, β = (kBT )−1 (where kB is Boltzmann’s constant
and T the absolute temperature, although β can be considered just as a scaling parameter),
Ĉ = exp(−βĤ ) is the Bloch density operator and Ĥ is the one-particle Hamiltonian

Ĥ = − h̄2

2m
∇2 + V (r) =

∑
i

εi |�i〉〈�i |, (1.2)

where εi are the energy eigenvalues and �i are the corresponding normalized wavefunctions
of the Schrödinger equation

Ĥ |�i〉 = εi |�i〉. (1.3)

The Bloch density matrix is of particular interest since its knowledge enables the Dirac density
matrix ρ(r, r′, µ) to be found through an inverse Laplace transform of C(r, r′, β)/β [1]. This
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density matrix is obtained from the density operator, which, given the Fermi energy of the
system µ, is

ρ̂µ =
∑
εi<µ

|�i〉〈�i |, ρ(r, r′, µ) = 〈r|̂ρµ|r′〉. (1.4)

Defining the so-called Slater sum as the diagonal element of the canonical density matrix

S(r, β) = C(r, r′, β)|r=r′ . (1.5)

March and Murray [1] showed that, for central fields, such a quantity satisfies a set of partial
differential equations for each orbital angular momentum quantum number �, which in the
one-dimensional case (� = 0) turns out to be precisely their equation (A1.6)

h̄2

8m

∂3S(x, β)

∂x3
− ∂2S(x, β)

∂x∂β
− V (x)

∂S(x, β)

∂x
− 1

2

dV (x)

dx
S(x, β) = 0. (1.6)

Here V (x) is a general confining potential in which an arbitrary number of independent
fermions move.

For the case of N independent fermions in d dimensions which are confined by a spherical
harmonic potential,

V (r) = 1
2mω2r2 with r2 = r2 = x2

1 + x2
2 + · · · + x2

d , (1.7)

it has also been shown [2, 3] that the corresponding Slater sum obeys the following partial
differential equation:

h̄2

8m

∂

∂r
∇2S(r, β) −

[
V (r) +

∂

∂β

]
∂S(r, β)

∂r
−

[
1 − d

2

]
dV (r)

dr
S(r, β) = 0. (1.8)

The purpose of the present paper is twofold:

(i) to present an alternative derivation of (1.6) and (1.8) using the Wigner transform [4] and
(ii) to give a simple proof of the so-called differential virial theorem of March and Young

[5, 6], which reads in one dimension

∂t(x, µ)

∂x
= −1

2

dV (x)

dx
ρ(x, µ). (1.9)

Here, V (x) is a general one-body potential and t(x, µ) = (t (x, µ) + tG(x, µ))/2 is the
average of the (�∇2�) and (∇�)2 wavefunction forms of the kinetic energy density. In
the independent particle framework, these kinetic energy densities are given in terms of
the single-particle wavefunctions (1.3) as

t (x, µ) = − h̄2

2m

∑
εi<µ

�∗
i (x)

d2�i(x)

dx2
, tG(x, µ) = h̄2

2m

∑
εi<µ

∣∣∣∣d�i(x)

dx

∣∣∣∣2

, (1.10)

ρ(x, µ) being the local single particle density obtained from the Dirac density matrix
(1.4)

ρ(x, µ) = 〈x |̂ρµ|x〉 =
∑
εi<µ

|�i(x)|2. (1.11)

We shall also be concerned with the d-dimensional version of such a differential virial
theorem, derived for the case of N-independent fermions moving in an isotropic harmonic
confining potential [7], which using obvious notation reads

∂t(r, µ)

∂r
= −d

2

dV (r)

dr
ρ(r, µ). (1.12)
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2. The Bloch equation in phase space representation

Consider a system of N-noninteracting fermions whose one-body Hamiltonian is Ĥ in (1.2).
The corresponding Bloch density matrix can be expressed using (1.1) and (1.3)

C(r, r′, β) =
∑

i

�i(r)�∗
i (r′) exp(−βεi). (2.1)

The derivative of the Bloch density operator Ĉ = exp(−βĤ ) with respect to β gives the
Bloch equation

∂Ĉ

∂β
= −Ĥ Ĉ = −ĈĤ , (2.2)

subject to the initial condition Ĉ(β = 0) = Î , where Î is the identity operator. In the following
it is better to rewrite equation (2.2) in a symmetrized form, that is

∂Ĉ

∂β
+

1

2
(Ĥ Ĉ + ĈĤ ) = 0. (2.3)

Next, to obtain the Bloch equation in phase space representation it is useful to introduce the
Wigner transformation [4]. The Wigner transform of the canonical density matrix can be
defined in d dimensions as follows:

CW(q, p, β) =
∫

exp
(
− ip · s

h̄

)
C

(
q +

s
2
, q − s

2
, β

) ds
(2πh̄)d

, (2.4)

where CW is a function of the phase space variables q and p, and we have introduced the
centre-of-mass and relative coordinates

q = r + r′

2
, s = r − r′. (2.5)

The inverse Wigner transform reads

C(r, r′, β) = C
(

q +
s
2
, q − s

2
, β

)
=

∫
exp

( ip · s
h̄

)
CW(q, p, β) dp. (2.6)

According to the definition of the Slater sum (1.5) one may write

S(r, β) =
∫

CW(r, p, β) dp. (2.7)

Let us consider now the Bloch equation (2.3). In order to apply the Wigner transform to
such an equation, one needs the transform of a product of two operators, which is given by the
rule [4]

(ÂB̂)W = AW

[
exp

(
ih̄

2

̂

)]
BW, (2.8)

where AW and BW are the transforms of the operators Â and B̂, and 
̂ is the operator


̂ =
←−
∂

∂r

−→
∂

∂p
−

←−
∂

∂p

−→
∂

∂r
=

d∑
i=1

[ ←−
∂

∂xi

−→
∂

∂pi

−
←−
∂

∂pi

−→
∂

∂xi

]
. (2.9)

In the above equation the arrows on the gradient operators indicate in which direction they
act. Therefore, the transform of equation (2.3) reads

∂CW(r, p, β)

∂β
+

1

2

[
HW(r, p) exp

(
ih̄

2

̂

)
CW(r, p, β)

+ CW(r, p, β) exp

(
ih̄

2

̂

)
HW(r, p)

]
= 0, (2.10)
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where

HW(r, p) = p2

2m
+ V (r) (2.11)

is the Wigner transform of the quantum Hamiltonian (1.2). Now, if we perform a Taylor
expansion of the operator

[
exp

(
i h̄
2 
̂

)]
, equation (2.10) reduces to

∂CW(r, p, β)

∂β
+ HW(r, p)

[
cos

(
h̄

2

̂

)]
CW(r, p, β) = 0, (2.12)

where we have used the fact that the terms with odd powers of h̄ or 
̂ cancel. This is the
Wigner translation of the Bloch equation [8]. We also want to quote a second equation satisfied
by the Wigner function CW(r, p, β) which follows from the obvious fact that the operators Ĥ

and Ĉ commute

[Ĥ , Ĉ] = Ĥ Ĉ − ĈĤ = 0. (2.13)

Translating this equation into phase space language by taking its Wigner transform, we get

HW(r, p)

[
exp

(
ih̄

2

̂

)]
CW(r, p, β) − CW(r, p, β)

[
exp

(
ih̄

2

̂

)]
HW(r, p) = 0, (2.14)

where we have used the product rule (2.8). Expanding the exponential operator, equation (2.14)
becomes

HW(r, p)

[
sin

(
h̄

2

̂

)]
CW(r, p, β) = 0, (2.15)

since the terms with even powers of h̄ or 
̂ cancel. We emphasize that equations (2.12) and
(2.15) are exact and hold in the multi-dimensional case. They constitute the basic relations
for our analysis.

2.1. The partial differential equation for a general one-dimensional confining potential

We shall first examine the one-dimensional case for which HW(x, p) = p2/(2m) + V (x).

Expanding the cosine operator in equation (2.12) in Taylor series, with the use of
definition (2.9), one can write explicitly

∂CW(x, p, β)

∂β
+ HW(x, p)CW(x, p, β) − h̄2

8m

∂2CW(x, p, β)

∂x2

+
∞∑

k=1

(−1)k

(2k)!

(
h̄

2

)2k d2kV (x)

dx2k

∂2kCW(x, p, β)

∂p2k
= 0.

If we integrate the above equation over the momentum p, taking into account equation (2.7)
and the fact that, from equation (2.4), the terms containing derivatives with respect to p vanish
by integration, we obtain

∂S(x, β)

∂β
+

∫ +∞

−∞
dp

p2

2m
CW(x, p, β) − h̄2

8m

∂2S(x, β)

∂x2
+ V (x)S(x, β) = 0. (2.16)

Taking the derivative with respect to x, we get

∂2S(x, β)

∂x∂β
+

∂

∂x

∫ +∞

−∞
dp

p2

2m
CW(x, p, β)

− h̄2

8m

∂3S(x, β)

∂x3
+

dV (x)

dx
S(x, β) + V (x)

∂S(x, β)

∂x
= 0. (2.17)
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To simplify the second term in this equation we make use of (2.15) with (2.9), expanding in
Taylor series the sine operator

h̄

2

(
dV (x)

dx

∂CW(x, p, β)

∂p
− p

m

∂CW(x, p, β)

∂x

)
+

∞∑
k=1

(−1)k

(2k + 1)!

(
h̄

2

)2k+1 d2k+1V (x)

dx2k+1

∂2k+1CW(x, p, β)

∂p2k+1
= 0. (2.18)

Multiplying the above equation by p/2 and then integrating over p, we get

∂

∂x

∫ +∞

−∞

p2

2m
CW(x, p, β) dp = 1

2

dV (x)

dx

∫ +∞

−∞
p

∂CW(x, p, β)

∂p
dp, (2.19)

since every term in the series vanishes upon integration on p, as follows easily from
equation (2.4). The integral in the right-hand side term of (2.19) can be performed, upon
using (2.4), as follows:∫ +∞

−∞
p

∂CW(x, p, β)

∂p
dp =

∫ +∞

−∞
p

∂

∂p

(∫ +∞

−∞
exp

(
− ips

h̄

)
C

(
x +

s

2
, x − s

2
, β

) ds

2πh̄

)
dp

=
∫ +∞

−∞
sC

(
x +

s

2
, x − s

2
, β

) d

ds

(∫ +∞

−∞
exp

(
− ips

h̄

) dp

2πh̄

)
ds

=
∫ +∞

−∞
C

(
x +

s

2
, x − s

2
, β

)
sδ′(s) ds = −C(x, x, β) = −S(x, β),

where we have used the definition of the Slater sum (1.5). Therefore equation (2.19) becomes

∂

∂x

∫ +∞

−∞

p2

2m
CW(x, p, β) dp = −1

2

dV (x)

dx
S(x, β). (2.20)

Now, if we insert equation (2.20) into (2.17), we obtain the partial differential equation given
by (1.6).

2.2. The partial differential equation for the case of harmonic confinement in d dimensions

Let us now move to the case of spherical harmonic potential in d dimensions (1.7), for which

HW(r, p) = p2

2m
+

1

2
mω2r2. (2.21)

We note that, as the classical Hamiltonian HW is of maximal degree two in position and
momentum, we may reduce equations (2.12) and (2.15) by expanding in Taylor series the
cosine and sine operators, because the terms in h̄3, h̄4 . . . vanish and therefore one may write
these equations as

∂CW(r, p, β)

∂β
+ HW(r, p)

[
1 − h̄2

8

̂2

]
CW(r, p, β) = 0, (2.22)

HW(r, p)
̂CW(r, p, β) = 0. (2.23)

Thus, equations (2.22) and (2.23) are exact for a harmonic oscillator Hamiltonian, with 
̂

given in equation (2.9), from which we get


̂2 =
d∑

i,j=1

[ ←−
∂

2

∂xi∂xj

−→
∂

2

∂pi∂pj

+
←−
∂

2

∂pi∂pj

−→
∂

2

∂xi∂xj
− 2

←−
∂

2

∂xi∂pj

−→
∂

2

∂pi∂xj

]
. (2.24)
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Substituting equation (2.24) into (2.22), and using

∂2HW(r, p)

∂xi∂xj

= δijmω2,
∂2HW(r, p)

∂pi∂pj

= δij

m
, and

∂2HW(r, p)

∂xi∂pj

= 0,

one then obtains
∂CW(r, p, β)

∂β
+

p2

2m
CW(r, p, β) +

1

2
mω2r2CW(r, p, β)

− m(h̄ω)2

8

(∇2
pCW(r, p, β)

) − h̄2

8m

(∇2
rCW(r, p, β)

) = 0, (2.25)

where ∇2
p stands for the Laplacian in the d-dimensional momentum space. Partial derivation

with respect to the radial variable r leads to

∂2CW(r, p, β)

∂r∂β
+

∂

∂r

(
p2

2m
CW(r, p, β)

)
+

1

2
mω2r2

(
∂CW(r, p, β)

∂r

)
+ mω2rCW(r, p, β)

− m(h̄ω)2

8

∂

∂r

(∇2
pCW(r, p, β)

) − h̄2

8m

∂

∂r

(∇2
rCW(r, p, β)

) = 0. (2.26)

Integrating this equation over p and using (2.7) we obtain

∂2S(r, β)

∂r∂β
+

∂

∂r

∫
p2

2m
CW(r, p, β) dp + mω2rS(r, β)

+
1

2
mω2r2 ∂S(r, β))

∂r
− h̄2

8m

∂

∂r
(∇2S(r, β)) = 0. (2.27)

As in the previous case, the integrals of terms containing derivatives of CW(r, p, β) with
respect to the variables p are zero. Now, we can express the second term in (2.27) with the
help of equation (2.23), which using the definition (2.9), can be rewritten in the form

p
m

· (∇rCW(r, p, β)) = mω2r · (∇pCW(r, p, β)). (2.28)

For a spherical harmonic oscillator CW(r, p, β) = CW(r, p, β), i.e., it depends only on the
moduli r = |r| and p = |p| [8], that is

CW(r, p, β) = 1

coshd(βh̄ω/2)
exp

[
−2 tanh(βh̄ω/2)

h̄ω
HW(r, p)

]
, (2.29)

a fact that immediately allows us to write (2.28) in the form
p

m

∂CW(r, p, β)

∂r
= mω2r

∂CW(r, p, β)

∂p
. (2.30)

Multiplying by p/2 and integrating with respect to p, we get

∂

∂r

∫
p2

2m
CW(r, p, β) dp = 1

2
mω2r

∫
p

∂CW(r, p, β)

∂p
dp

= −d

2
mω2r

∫
CW(r, p, β) dp = −d

2
mω2rS(r, β). (2.31)

We have taken into account that the integration on the p-space can be reduced, in this case, to
a ‘radial’ integral, with

dp = 2π
d
2 pd−1 dp

�
(

d
2

) , (2.32)

where �(z) represents the Gamma function and we have also used the fact that
pdCW(r, p, β) → 0 as p → ∞, a property which is satisfied by using (2.29). Finally,
inserting (2.31) into (2.27), we easily get the result given in equation (1.8). Remark that no
analytical expression of the Wigner function CW(r, p, β) was needed, only the fact that it
depends on r and p.
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3. The differential virial theorem

To prove the differential virial theorem, we start with the equation of motion

Ĥ ρ̂µ − ρ̂µĤ = 0. (3.1)

This relation is similar to equation (2.13) and therefore we follow the same procedure used in
obtaining (2.15) to get the equation of motion in Wigner phase space:

HW(r, p)

[
sin

(
h̄

2

̂

)]
ρW(r, p, µ) = 0, (3.2)

where ρW(r, p, µ) is the Wigner transform of the density matrix (1.4).

3.1. The case of a general one-dimensional confining potential

Again, in a similar way as was done previously to obtain equations (2.18)–(2.20) from (2.15),
equation (3.2) leads, for the one-dimensional case, to

∂

∂x

∫ +∞

−∞

p2

2m
ρW(x, p,µ) dp = −1

2

dV (x)

dx
ρ(x, µ), (3.3)

where we have used the fact that the local particle density ρ(x, µ) is given in terms of its
Wigner transform ρW(x, p,µ) as

ρ(x, µ) =
∫ +∞

−∞
ρW(x, p,µ) dp. (3.4)

Next, it has been shown in [9] that∫ +∞

−∞

p2

2m
ρW(x, p,µ) dp = t(x, µ) = t (x, µ) + tG(x, µ)

2
, (3.5)

represents exactly the arithmetical average between the usual forms of the kinetic energy
density (1.10). Equation (3.5) holds also in the multi-dimensional case and, as noted in [9], it
exhibits the connnection between the classical average of the kinetic energy and its quantum
counterpart. Inserting equation (3.5) into (3.3), one finally finds the one-dimensional version
of the differential virial theorem given by equation (1.9).

3.2. The case of harmonic confinement in d dimensions

To obtain the differential virial theorem for an isotropic harmonic oscillator in d dimensions,
we mimic the arguments developed in the previous section for such a potential (indeed
equations (2.23), (2.28)–(2.31)). Thus, equation (3.2) can be rewritten as

HW(r, p, µ)
̂ρW(r, p, µ) = 0, (3.6)

and using the definition (2.9), we get
p
m

· (∇rρW(r, p, µ)) = mω2r · (∇pρW(r, p, µ)). (3.7)

Next, it has been shown in [10] that for a degenerate system of fermions completely filling
(M + 1) oscillator shells, the density in Wigner phase space, ρW(r, p, µ), depends only on the
quantity HW(r, p) (2.21). Indeed

ρW(r, p, µ) = 1

(πh̄)d

[
M∑

k=0

(−1)kLd−1
k (4HW(r, p)/h̄ω)

]
exp(−2HW(r, p)/h̄ω). (3.8)
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Using such a dependence through the moduli r and p, equation (3.7) reduces to

p

m

∂ρW(r, p, µ)

∂r
= mω2r

∂ρW (r, p, µ)

∂p
(3.9)

As this relation is similar to equation (2.30), we now follow the same derivation as was done
there, to obtain here an equation similar to (2.31), satisfied by the density ρW(r, p, µ):

∂

∂r

∫ (
p2

2m
ρW(r, p, µ)

)
dp = −d

2
mω2rρ(r, µ) = −d

2

dV (r)

dr
ρ(r, µ). (3.10)

In deriving the above equation, we have used that pdρW(r, p, µ) → 0 as p → ∞. A property
which is shown by invoking (3.8). Since equation (3.5) holds also in arbitrary dimension, one
ends with the d-dimensional form of the differential virial theorem (1.12)

∂t(r, µ)

∂r
= −d

2

dV (r)

dr
ρ(r, µ). (3.11)

Remark that again we did not use the precise analytical expression of the density ρW(r, p, µ),

only the fact that it depends on the moduli r and p is needed.

4. Summary and future directions

The derivation presented in this paper can add to one’s insight and may be useful in some
future calculations. Although in this work we limited ourselves only to the local densities
in the coordinate representation, for future directions it will be of interest to obtain, using
the Wigner transform, equations for densities in momentum space. Equations for non-local
quantities in coordinate representation, such as those given in [11–13], can also be worked out
within the present treatement.

Acknowledgments

Thanks are due to Professor R J Lombard for sending us a copy of [9] and to the anonymous
referees for their constructive suggestions. This work is supported by the Spanish MEC
(BFM2002-03773) and Junta de Castilla y León (VA013C05).

References

[1] March N H and Murray A M 1960 Phys. Rev. 120 830
[2] Minguzzi A, March N H and Tosi M P 2001 Eur. Phys. J. D 15 315
[3] March N H and Howard I A 2003 Phys. Status Solidi b 237 265
[4] Wigner E P 1932 Phys. Rev. 40 749

Groenewold H J 1946 Physica 12 405
Moyal J E 1949 Proc. Camb. Phil. Soc. 45 99

[5] March N H and Young W H 1959 Nucl. Phys. 12 237
[6] March N H 1979 J. Chem. Phys. 70 587
[7] Van Zyl B P et al 2003 Phys. Rev. A 67 023609
[8] Hillery M, O’Connel R F, Scully M O and Wigner E P 1984 Phys. Rep. 106 121
[9] Lombard R J, Mas D and Moszkowski S A 1991 J. Phys. G: Nucl. Part. Phys. 17 455

[10] Shlomo S and Prakash M 1981 Nucl. Phys. A 357 157
[11] Howard I A and March N H 2001 J. Phys. A: Math. Gen. 34 L491
[12] March N H, Nieto L M and Tosi M P 2001 Physica B 293 308
[13] Howard I A, March N H and Nieto L M 2002 J. Phys. A: Math. Gen. 35 4985


	1. Introduction
	2. The Bloch equation in phase space representation
	2.1. The partial differential equation for a general one-dimensional confining potential
	2.2. The partial differential equation for the case of harmonic

	3. The differential virial theorem
	3.1. The case of a general one-dimensional confining potential
	3.2. The case of harmonic confinement

	4. Summary and future directions
	Acknowledgments
	References

